• Login
  • Register

Work for a Member company and need a Member Portal account? Register here with your company email address.

Publication

A Framework for Measuring the Time-Varying Shape and Full-Field Deformation of Residual Limbs Using 3-D Digital Image Correlation

Copyright

Dana Solav

Dana Solav

Solav, D., Moerman, K. M., Jaeger, A. M., & Herr, H. (2019). A framework for measuring the time-varying shape and full-field deformation of residual limbs using 3D digital image correlation. IEEE Transactions on Biomedical Engineering, 66(10), 2740-2752.

Abstract

 Effective prosthetic socket design following lower limb amputation depends upon the accurate characterization of the shape of the residual limb as well as its volume and shape fluctuations. Objective: This study proposes a novel framework for the measurement and analysis of residual limb shape and deformation, using a high-resolution and low-cost system. Methods: A multi-camera system was designed to capture sets of simultaneous images of the entire residuum surface. The images were analyzed using a specially developed open-source three-dimensional digital image correlation (3D-DIC) toolbox, to obtain the accurate time-varying shapes as well as the full-field deformation and strain maps on the residuum skin surface. Measurements on a transtibial amputee residuum were obtained during knee flexions, muscle contractions, and swelling upon socket removal. Results: It was demonstrated that 3D-DIC can be employed to quantify with high resolution time-varying residuum shapes, deformations, and strains. Additionally, the enclosed volumes and cross-sectional areas were computed and analyzed. Conclusion: This novel low-cost framework provides a promising solution for the in vivo evaluation of residuum shapes and strains, as well as has the potential for characterizing the mechanical properties of the underlying soft tissues. Significance : These data may be used to inform data-driven computational algorithms for the design of prosthetic sockets, as well as of other wearable technologies mechanically interfacing with the skin.

Related Content