Vepakomma, Praneeth et al. Differentially Private Supervised Manifold Learning with Applications like Private Image Retrieval. arXiv:2102.10802v1 [cs.LG] 22 Feb 2021
Work for a Member company and need a Member Portal account? Register here with your company email address.
Vepakomma, Praneeth et al. Differentially Private Supervised Manifold Learning with Applications like Private Image Retrieval. arXiv:2102.10802v1 [cs.LG] 22 Feb 2021
Differential Privacy offers strong guarantees such as immutable privacy under post processing. Thus it is often looked to as a solution to learning on scattered and isolated data. This work focuses on supervised manifold learning, a paradigm that can generate fine-tuned manifolds for a target use case. Our contributions are two fold. 1) We present a novel differentially private method PrivateMail for supervised manifold learning, the first of its kind to our knowledge. 2) We provide a novel private geometric embedding scheme for our experimental use case. We experiment on private "content based image retrieval" - embedding and querying the nearest neighbors of images in a private manner - and show extensive privacy-utility tradeoff results, as well as the computational efficiency and practicality of our methods.