• Login
  • Register

Work for a Member company and need a Member Portal account? Register here with your company email address.

Publication

Control of a powered ankle-foot prosthesis based on a neuromuscular model

M. F. Eilenberg, H. Geyer, and H. M. Herr. Control of a powered ankle-foot prosthesis based on a neuromuscular model, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 2, pp. 164-173, 2010.

Abstract

Control schemes for powered ankle–foot prostheses rely upon fixed torque–ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their intended gait speed and terrain, these controllers do not allow for adaptation to environmental disturbances such as speed transients and terrain variation. Here we present an adaptive muscle-reflex controller, based on simulation studies, that utilizes an ankle plantar flexor comprising a Hill-type muscle with a positive force feedback reflex. The model’s parameters were fitted to match the human ankle’s torque-angle profile as obtained from level-ground walking measurements of a weight and height-matched intact subject walking at 1 m/s. Using this single parameter set, clinical trials were conducted with a transtibial amputee walking on level ground, ramp ascent, and ramp descent conditions. During these trials, an adaptation of prosthetic ankle work was observed in response to ground slope variation, in a manner comparable to intact subjects, without the difficulties of explicit terrain sensing. Specifically, the energy provided by the prosthesis was directly correlated to the ground slope angle. This study highlights the importance of neuromuscular controllers for enhancing the adaptiveness of powered prosthetic devices across varied terrain surfaces.

Related Content