Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking

E. C. Martinez-Villalpando, and H. M. Herr. Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking, Journal of Rehabilitation Research & Development (JRRD), vol. 46, no. 3, pp. 361-73, 2009.


We present a powered knee prosthesis with two series-elastic actuators positioned in parallel in an agonistantagonist arrangement. To motivate the knee’s design, we developed a prosthetic knee model that comprises a variable damper and two series-elastic clutch units that span the knee joint. Using human gait data to constrain the model’s joint to move biologically, we varied model parameters using an optimization scheme that minimized the sum over time of the squared difference between the model’s joint torque and biological knee values. We then used these optimized values to specify the mechanical and control design of the prosthesis for level-ground walking. We hypothesized that a variableimpedance control design could produce humanlike knee mechanics during steady-state level-ground walking. As a preliminary evaluation of this hypothesis, we compared the prosthetic knee mechanics of an amputee walking at a self-selected gait speed with those of a weight- and height-matched nonamputee. We found qualitative agreement between prosthetic and human knee mechanics. Because the knee’s motors never perform positive work on the knee joint throughout the levelground gait cycle, the knee’s electrical power requirement is modest in walking (8 W), decreasing the size of the onboard battery required to power the prosthesis.

Related Content