Philipp Schoessler, Daniel Windham, Daniel Leithinger, Sean Follmer, Hiroshi Ishii
Philipp Schoessler, Daniel Windham, Daniel Leithinger, Sean Follmer, Hiroshi Ishii
Pin-based shape displays not only give physical form to digital information, they have the inherent ability to accurately move and manipulate objects placed on top of them. In this paper we focus on such object manipulation: we present ideas and techniques that use the underlying shape change to give kinetic ability to otherwise inanimate objects. First, we describe the shape display's ability to assemble, disassemble, and reassemble structures from simple passive building blocks through stacking, scaffolding, and catapulting. A technical evaluation demonstrates the reliability of the presented techniques. Second, we introduce special kinematic blocks that are actuated and sensed through the underlying pins. These blocks translate vertical pin movements into other degrees of freedom like rotation or horizontal movement. This interplay of the shape display with objects on its surface allows us to render otherwise inaccessible forms, like overhangs, and enables richer input and output.