Work for a Member company and need a Member Portal account? Register here with your company email address.
It is now common knowledge that neurological disorders arise from the dysregulation of neural circuits, rather than from a single afflicted region of the brain. Conventionally, drugs for these diseases are administered orally or intravenously, with drug treatments distributed throughout the body. Such approaches to drug delivery lack the spatial resolution to target specific dysfunctional neural pathways, resulting in delivery kinetics that are too coarse to adequately compete with the rapidly changing activity in the brain.
Currently, clinical methods of drug delivery result in: (1) systemic toxicity; (2) rapidly escalating dosing regimens; and (3) limited therapeutic efficacy. Despite some improvements in our understanding of the pathophysiological effects associated with neurodegenerative disorders, there is a deficit of suitable technology that can integrate with the rapid dynamics of neural circuits.
In this research, we aimed to bridge the gap between cutting-edge neuroscience research and novel engineered devices by developing a multi-functional neural system capable of exploring—and eventually treating—Parkinson’s disease. This multi-functionality makes it a powerful tool to modulate specific neural pathways in animal models.
The biocompatible, remotely controllable Miniaturized Neural Drug delivery System, called MiNDS, permits dynamic neural adjustment with pinpoint spatial resolution and cell-type specificity. With dual chemical-delivery channels and an electrode embedded in a stainless-steel needle carrier, microfabricated MiNDS can chemically modulate local neuronal activity and related behavioral changes in animal subjects while simultaneously recording neural activity to enable feedback control. In this way, it becomes possible to decrease both systemic toxicity and therapy time.
MiNDS is customizable, with high-bending stiffness, high aspect ratio, and an adjustable number of channels, which allows it to reliably reach deep brain structures in small- and large-animal models without the need of an extraneous guide tube to implant. Our collective infusion findings via three-dimensional positron emission tomography imaging show the capability of MiNDS to maintain a localized delivery. Moreover, MiNDS avoids the problems of backflow encountered in acute infusions, and can deliver nano-liter quantities of drugs in a tunable, repeatable manner.
Learn more: https://www.media.mit.edu/publications/minds/
Canan Dagdeviren
Assistant Professor of Media Arts and Sciences
LG Career Development Professor of Media Arts and Sciences
Principal Investigator, Conformable Decoders research group
https://www.youtube.com/watch?v=BTxetxNtptQ
Video credit: Jimmy Day, MIT Media Lab
License: CC BY NC 4.0
MIT Media Lab Communications
press@media.mit.edu