By Andrew Paul
A team of international researchers have developed an adaptation to potentially help with 3D printing’s polymer problem.
For quick prototyping jobs, designers often turn to fused filament fabrication (FFF) 3D printers. In these machines, molten polymers are layered atop one another using a heated nozzle. This process is underpinned by what’s known as slicer software, which informs the device of all the little details like temperature, speed, and flow necessary to make a specific desired product, instead of an amorphous blob of congealed goo. But a slicer only works for a reliably uniform material—that wouldn’t be too much of a problem, except most of those materials are often unrecyclable plastics.
But thanks to engineers collaborating between MIT’s Center for Bits and Atoms (CBA), the US National Institute of Standards and Technology (NIST), and the National Center for Scientific Research in Greece, a little computational fine-tuning can now allow an off-the-shelf device to analyze, adjust, and successfully utilize previously unrecognizable printing materials in real-time to create more eco-friendly products.